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Abstract
The generalized sine-Gordon system is an integrable system implicitly
describing submanifolds of negative constant curvature in Euclidean spaces.
To obtain the associated spectral problem we consider immersions of these
submanifolds in spheres. The spectral parameter turns out to be related to
the radius of the spheres. We also derive the so-called Sym–Tafel formula
which yields the radius vector of negative constant curvature submanifolds in
Euclidean spaces.

PACS numbers: 0230I, 0230J, 0240, 0270H

There are no doubts that spectral problems and, in particular, the spectral parameter play a
very important role in the theory of completely integrable systems (see, for instance, [1]). This
approach is motivated by the ideas of quantum mechanics: the Korteweg–de Vries equation (the
first equation solved by the inverse scattering method) has been associated with the stationary
Schrödinger equation [2]. In this case the spectral parameter is related to the energy.

A large class of integrable systems is of geometric origin. In fact one can see a growing
overlap of the classical differential geometry of immersions with the modern theory of
integrable equations [3–9]. Here we focus our attention on the following system of nonlinear
partial differential equations [10, 11]:

∂αik

∂xj
= αijβjk (k �= j)

∂βik

∂xj
= βijβjk (i, j, k distinct)

∂βjk

∂xj
+
∂βkj

∂xk
+

n∑
i=1

βijβik = αnjαnk (j �= k)

(1)
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where indices i, j, k run from 1 to n (n � 2 is fixed), (αik) = A is n × n orthogonal matrix,
βjk are defined (for j �= k) by the first equation of (1) and, by assumption, βkk = 0.

The system (1), known as the generalized sine-Gordon system [11], implicitly describes
n-dimensional submanifolds of constant sectional curvature K = −1 (in other words:
Lobachevsky spaces or space forms) immersed in a Riemannian space form of constant
curvature K̃ > −1 [12, 13]. In particular, it describes immersions of n-dimensional
Lobachevsky space Ln of curvature K = −1 in the Euclidean space E2n−1 and in spheres
S2n−1 of any radius. This suggests another, perhaps more suitable, name for the system (1),
namely an LE system (‘Lobachevsky–Euclid’) [12].

Note that the coefficients βjk are algebraically expressed by the coefficients ofA and their
derivatives which means that the dependent variables of the system (1) coincide with variables
parametrizing orthogonal matrices of a given dimension n. In the case n = 2 the orthogonal
matrix A is parametrized by a single angle ω:

A =
(

cosω sinω
− sinω cosω

)
(2)

and the system (1) reduces to the sine-Gordon equation

ω,11 −ω,22 = sinω cosω

which has numerous applications in physics: crystal dislocations, Josephson junctions, spin
waves, Bloch walls in ferromagnetics, field theory models, etc (see, for instance, [14]).

Some physical applications in the case of n > 2 have been found as well. For
n = 3 the system (1) contains as a subsystem the equations describing the dynamics
of the rigid body with the fixed point at the centre of mass in the central gravitational
field [15]. For n = 4 the equations (1) can be interpreted as an analogue of the Maxwell
equations for a certain gauge field model [16]. In general, the system (1) is closely related
to the Hamiltonian systems with applications in hydrodynamics [17] and topological field
theory [18].

In this letter we will show that the integrability of the generalized sine-Gordon system
(understood as the existence of the spectral problem and related constructions) is deeply rooted
in natural geometrical structures. First, considering immersions of Lobachevsky spaces in the
sphere of an arbitrary radius we rediscover the associated spectral problem (we omit the details
which can be found elsewhere [19]). The spectral parameter turns out to be expressed in an
explicit algebraic way by the radius of the ambient sphere. This type of phenomenon was
first noticed by Doliwa and Santini [20, 21] in the case of the evolution of curves in S3. They
derived the Ablowitz–Ladik spectral problems [22] as a consequence of some very simple
geometric assumptions.

The second result of this letter, also motivated by results of Doliwa and Santini [20, 21],
consists in the derivation of the Sym–Tafel formula for the system (1). The Sym–Tafel
formula F = �−1�,λ yields some local immersions provided that we have the fundamental
solution � of a given spectral problem with the spectral parameter λ [23–25]. For instance,
starting from the spectral problem for the sine-Gordon equation we get pseudospherical
surfaces [4, 24]. The Bianchi–Bäcklund transformation is reconstructed automatically. In
the general case (1) the Sym–Tafel formula has been applied as well [26]. The important
advantage of Sym’s approach consists in the simplification of the explicit reconstruction of the
immersion in the case when the frame consisting of the tangent vectors and normal vectors
is given. To find the radius vector of an immersion one has to perform an integration (the
problem is solved up to quadratures). The Sym–Tafel formula replaces this integration by
differentiation with respect to the spectral parameter. Other important advantages of this
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formula include the effective discretization procedure [26–28] and unification of integrable
nonlinearities [24, 25].

The equations (1) can be obtained as compatibility conditions for a system of linear
equations describing the kinematics of the moving frame associated with the immersed
submanifold. Indeed, let us consider the general case of an immersion of n-dimensional
Lobachevsky space Ln into the sphere S2n−1 ⊂ E2n of radius R. Similarly to the case of
an immersion of Ln in a Euclidean space [10, 31], one can prove that there exists n principal
directions τ1, . . . , τn (unit vectors which are tangent to the coordinates denoted by x1, . . . , xn,
respectively) such that the metric and second fundamental forms are simultaneously diagonal.
Moreover, the normal bundle is known to be flat which means that in the normal space there
exists a basis ν1, . . . , νn such that the corresponding torsion coefficients vanish. Note that one
of these normals (say, νn) is orthogonal to the sphere S2n−1, i.e. the radius vector of the sphere
is given by Rνn.

Thus the SO(2n)-valued function � := (τ1, τ2, . . . , τn, ν1, . . . , νn)
T (where the

superscript T means the transposition) explicitly describes the moving frame of tangent and
normal vectors associated with the considered immersion. The kinematics of this frame is
given by

∂�

∂xi
= �i� (3)

(for details see [19]) where�1, . . . , �n are so(2n)-valued (i.e. traceless and skew-symmetric)
matrices of the form

�i :=




0 · · · β1i · · · 0 0 · · · 0 0
... · · · ... · · · ...

... · · · ...
...

−β1i · · · 0 · · · −βni aα1i · · · aαn−1,i − 1
R
αni

... · · · ... · · · ...
... · · · ...

...

0 · · · βni · · · 0 0 · · · 0 0
0 · · · −aα1i · · · 0 0 · · · 0 0
... · · · ... · · · ...

... · · · ...
...

0 · · · −aαn−1,i · · · 0 0 · · · 0 0
0 · · · 1

R
αni · · · 0 0 · · · 0 0




where non-zero entries appear only in ith row and ith column, and a is defined by

a2 = 1 +
1

R2
. (4)

The presented construction yields positive values of the parameters R and a. Parametrizing a
and R by λ in the following way:

a = 1

2

(
1

λ
+ λ

)
1

R
= 1

2

(
1

λ
− λ

)
(5)

we obtain the linear (spectral) problem equivalent (modulo a change of the basis and the
signature) to the problem given by Ablowitz et al [29] (compare also [26, 30]).

The crucial point is that the compatibility conditions for (3) (given by the LE system (1))
do not depend onR. Therefore the system (3) is a family of linear equations parametrized byR
(or, which is more convenient, by λ). The situation is typical for integrable systems. The linear
system containing a free parameter (the ‘spectral parameter’) is known as the linear problem
(or Lax pair). The presence of the parameter is important for applying various methods of
soliton theory, for example, the Darboux–Bäcklund transformation.
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One more remark is in order. Positive a andR correspond to 0 < λ < 1 and only this case
results directly from geometry. However, as far as the compatibility conditions are concerned,
we may extend the range of λ on the whole real axis (or even on the complex plane). The
geometric interpretation of the case λ > 0 will be discussed below.

The conclusion is clear: the spectral problem with the spectral parameter for the
generalized sine-Gordon system coincides with the system of Gauss–Weingarten equations
for the local immersion of the Lobachevsky space Ln into the sphere S2n−1 of radius R. The
spectral parameter λ is related to the radius R by the formula (5).

The linear problem (3) can be rewritten in terms of Clifford numbers (see [26]). To this
end we identify generators of the Lie algebra so(2n) with the generators of the Lie algebra of
the group Spin(2n), namely

fµν ↔ 1
2eµeν

where fµν are antisymmetric 2n × 2n matrices with coefficients fµναβ := δµαδνβ − δµβδνα
and eµ are generators of the Clifford algebra C(2n), i.e. they satisfy the relations

eµeν + eνeµ = 0 (µ �= ν)
e2
µ = 1 (µ = 1, . . . , 2n).

Then, the spectral problem (3) assumes the form

�,j = Uj� (6)

where � is an element of Spin(2n) corresponding to the rotation defined by � and

Uj := 1

2
ej

(
−

n∑
k=1

βkjek +
λ2 + 1

2λ

n−1∑
i=1

αijen+i +
λ2 − 1

2λ
αnje2n

)
. (7)

The compatibility conditions for the linear system (6), (7) coincide, of course, with the
generalized sine-Gordon system (1).

Now, we proceed to the geometric derivation of the Sym–Tafel formula. Identifying an
appropriate constant orthonormal basis in the ambient space E2n with e1, . . . , e2n we can
express the frame associated with the considered immersion by �, namely τk = �−1ek�,
νk = �−1en+k� (k = 1, . . . , n). In particular, the radius vector of Ln ⊂ S2n−1 is given by

r = R�−1e2n�. (8)

The formula (8) has been derived from geometry under the assumptionsR > 0 and 0 < λ < 1.
It can be formally applied also for λ > 1. Then the formula (5) yields R negative. We are
going to explain the geometric meaning of this case. Let us note the following symmetry of
the spectral problem (7):

Uk(1/λ) = e2nUk(λ)e2n.

Therefore we can confine ourselves to solutions � satisfying

�(1/λ) = e2n�(λ)e2n (9)

which implies that

r(1/λ) = −e2nr(λ)e2n. (10)

Geometrically it means that r(1/λ) is the reflection of r(λ) in the hyperplane orthogonal to
e2n. The formula (10) can be considered as a geometric definition of r(λ) for λ > 1. The
interpretation of negative values of λ can be performed in an analogous way using another
symmetry of the spectral problem (7).
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The limiting case λ = 1 formally corresponds to R = ±∞. To obtain the precise
geometric meaning of the limiting process let us consider the formula (10). If λ → 1−, then
r(λ) becomes an immersion in a sphere of the radius R → ∞ and the formula (10) yields
the right-hand limit of r(λ) at λ = 1. The immersions r(1+) and r(1−) are symmetric with
respect to the hyperplane orthogonal to e2n.

The radius vector r is not very convenient because for R → ∞ it tends to infinity.
Following [21] (where this idea was applied in the case of integrable evolutions of curves) let
us consider

F̂ := r − Re2n (11)

which simply means a change of the frame of reference. Now, the submanifold is described
with respect to a fixed point on the sphere (the north pole for R > 0 and the south pole for
R < 0) rather than with respect to the centre of the sphere. Then

F̂ = R�−1e2n� − Re2n = 2
1
λ

− λ
(
�−1e2n� − e2n

)
. (12)

We can check that

F̂

(
1

λ

)
= −e2nF̂ (λ)e2n (13)

which means that F̂ (1/λ) and F̂ (λ) have identical components orthogonal to the polar axis.
Their parallel components are opposite. F̂ (1−) yields an immersion in the sphere of infinite
radius and can be identified with the immersion into the tangent space to the sphere at the
north pole (at least when an immersion of a sufficiently small region is concerned, the global
issues can be more complicated). The right-hand limit yields the same immersion reflected
in the hyperplane orthogonal to the e2n-axis. Thus the vectors F̂ (1+) and F̂ (1−) belong to
tangent spaces at antipodal points. Considering them as elements of the linear space spanned
by e1, . . . , e2n−1 we have F̂ (1+) = F̂ (1−) although these vectors are located at different
points. In what follows we will compute this limit (shortly denoted by F ) assuming that the
solution� of the spectral problem (6), (7) is a differentiable function of λ in a neighbourhood
of λ = 1.

Performing the limit λ→ 1 in the formula (12) we apply L’Hospital’s rule to get

F := lim
λ→1

F̂ (λ) = �(1)−1� ′(1)�(1)−1e2n�(1)−�(1)−1e2n�
′(1) (14)

where the prime denotes the derivative with respect to λ. From (9) it follows that

�(1)e2n = e2n�(1)

e2n�
′(1) = −� ′(1)e2n.

Therefore from (14) we get immediately the Sym–Tafel formula [4, 24]:

F = 2�(1)−1� ′(1)e2n = −2e2n �
−1 ∂�

∂λ

∣∣∣∣
λ=1

. (15)

The factor e2n just projects �−1�,λ (assuming values in E2n ∧ e2n � E2n−1) onto E2n−1.
The Sym–Tafel formula has been successfully applied to several classes of surfaces in

E3 (compare [4, 5, 8, 25] and references quoted therein). It would be interesting to find
a geometrical derivation of the Sym–Tafel formula in the case of K = const surfaces,
H = const surfaces, isothermic surfaces, Bianchi surfaces and other integrable classes of
immersions.

The results presented in this letter are included with more details in a larger paper [19]. One
can also find there other new results on immersions of Lobachevsky spaces. We discuss special
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submanifolds generalizing Clifford tori and differential equations describing the Bäcklund
transformation in the case of L2 ⊂ S3. In particular, we study the regularity of the Bäcklund
transformation image.

This research was supported, in part, by the KBN grant 2 P03B 143 15.
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